Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Blood Adv ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536906

RESUMO

TET2-mediated DNA demethylation plays a pivotal role in regulating pre-leukemic clonal expansion in acute myeloid leukemia (AML), where TET2 mutations are also linked to AML progression. However, its function in other types of leukemias, including T-cell acute lymphoblastic leukemia (T-ALL), remains unclear. Here, we used two different T-ALL mouse models to study the possible tumor suppressor role of Tet2 in pre-leukemic T-ALL. Overexpression of Tet2 resulted in a mild but significant increase in T-ALL latency in the immature CD2-Lmo2tg T-ALL mouse model, but no effect on survival was observed in the mature Lck-Cretg/+ Ptenfl/lf T-ALL mouse model. In contrast to the pre-leukemic thymocytes from CD2-Lmo2tg mice, Lck-Cretg/+ Ptenfl/fl thymi do not display self-renewal suggesting that the anti-leukemic effect of Tet2 occurs mainly in the pre-leukemic phase of T-ALL. In conclusion, we demonstrated that the Tet2 tumor suppressor function is dependent on the differentiation stage of T-ALL and limited to the pre-leukemic phase.

2.
Hemasphere ; 8(3): e51, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38463444

RESUMO

T-lineage acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy that accounts for 10%-15% of pediatric and 25% of adult ALL cases. Although the prognosis of T-ALL has improved over time, the outcome of T-ALL patients with primary resistant or relapsed leukemia remains poor. Therefore, further progress in the treatment of T-ALL requires a better understanding of its biology and the development of more effective precision oncologic therapies. The proto-oncogene MYB is highly expressed in diverse hematologic malignancies, including T-ALLs with genomic aberrations that further potentiate its expression and activity. Previous studies have associated MYB with a malignant role in the pathogenesis of several cancers. However, its role in the induction and maintenance of T-ALL remains relatively poorly understood. In this study, we found that an increased copy number of MYB is associated with higher MYB expression levels, and might be associated with inferior event-free survival of pediatric T-ALL patients. Using our previously described conditional Myb overexpression mice, we generated two distinct MYB-driven T-ALL mouse models. We demonstrated that the overexpression of Myb synergizes with Pten deletion but not with the overexpression of Lmo2 to accelerate the development of T-cell lymphoblastic leukemias. We also showed that MYB is a dependency factor in T-ALL since RNA interference of Myb blocked cell cycle progression and induced apoptosis in both human and murine T-ALL cell lines. Finally, we provide preclinical evidence that targeting the transcriptional activity of MYB can be a useful therapeutic strategy for the treatment of T-ALL.

3.
Cancers (Basel) ; 15(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36765607

RESUMO

T-cell lymphoblastic lymphoma (T-LBL) is a rare and aggressive lymphatic cancer, often diagnosed at a young age. Patients are treated with intensive chemotherapy, potentially followed by a hematopoietic stem cell transplantation. Although prognosis of T-LBL has improved with intensified treatment protocols, they are associated with side effects and 10-20% of patients still die from relapsed or refractory disease. Given this, the search toward less toxic anti-lymphoma therapies is ongoing. Here, we targeted the recently described DNA hypermethylated profile in T-LBL with the DNA hypomethylating agent decitabine. We evaluated the anti-lymphoma properties and downstream effects of decitabine, using patient derived xenograft (PDX) models. Decitabine treatment resulted in prolonged lymphoma-free survival in all T-LBL PDX models, which was associated with downregulation of the oncogenic MYC pathway. However, some PDX models showed more benefit of decitabine treatment compared to others. In more sensitive models, differentially methylated CpG regions resulted in more differentially expressed genes in open chromatin regions. This resulted in stronger downregulation of cell cycle genes and upregulation of immune response activating transcripts. Finally, we suggest a gene signature for high decitabine sensitivity in T-LBL. Altogether, we here delivered pre-clinical proof of the potential use of decitabine as a new therapeutic agent in T-LBL.

6.
J Exp Med ; 218(10)2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34406363

RESUMO

Mantle cell lymphoma (MCL) is an aggressive B cell lymphoma with poor long-term overall survival. Currently, MCL research and development of potential cures is hampered by the lack of good in vivo models. MCL is characterized by recurrent translocations of CCND1 or CCND2, resulting in overexpression of the cell cycle regulators cyclin D1 or D2, respectively. Here, we show, for the first time, that hematopoiesis-specific activation of cyclin D2 is sufficient to drive murine MCL-like lymphoma development. Furthermore, we demonstrate that cyclin D2 overexpression can synergize with loss of p53 to form aggressive and transplantable MCL-like lymphomas. Strikingly, cyclin D2-driven lymphomas display transcriptional, immunophenotypic, and functional similarities with B1a B cells. These MCL-like lymphomas have B1a-specific B cell receptors (BCRs), show elevated BCR and NF-κB pathway activation, and display increased MALT1 protease activity. Finally, we provide preclinical evidence that inhibition of MALT1 protease activity, which is essential for the development of early life-derived B1a cells, can be an effective therapeutic strategy to treat MCL.


Assuntos
Ciclina D2/genética , Linfoma de Célula do Manto/genética , Linfoma de Célula do Manto/patologia , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/antagonistas & inibidores , Aloenxertos , Animais , Linfócitos B/metabolismo , Linfócitos B/patologia , Ciclina D2/metabolismo , Regulação Neoplásica da Expressão Gênica , Linfoma de Célula do Manto/tratamento farmacológico , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/metabolismo , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Células Neoplásicas Circulantes , Proteína Supressora de Tumor p53/genética , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Sci Rep ; 9(1): 10577, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31332244

RESUMO

In cancer research, it remains challenging to functionally validate putative novel oncogenic drivers and to establish relevant preclinical models for evaluation of novel therapeutic strategies. Here, we describe an optimized and efficient pipeline for the generation of novel conditional overexpression mouse models in which putative oncogenes, along with an eGFP/Luciferase dual reporter, are expressed from the endogenous ROSA26 (R26) promoter. The efficiency of this approach was demonstrated by the generation and validation of novel R26 knock-in (KI) mice that allow conditional overexpression of Jarid2, Runx2, MN1 and a dominant negative allele of ETV6. As proof of concept, we confirm that MN1 overexpression in the hematopoietic lineage is sufficient to drive myeloid leukemia. In addition, we show that T-cell specific activation of MN1 in combination with loss of Pten increases tumour penetrance and stimulates the formation of Lyl1+ murine T-cell lymphoblastic leukemias or lymphomas (T-ALL/T-LBL). Finally, we demonstrate that these luciferase-positive murine AML and T-ALL/T-LBL cells are transplantable into immunocompromised mice allowing preclinical evaluation of novel anti-leukemic drugs in vivo.


Assuntos
Neoplasias Hematológicas/genética , Oncogenes/genética , Animais , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Feminino , Técnicas de Introdução de Genes , Genes Reporter , Neoplasias Hematológicas/etiologia , Humanos , Leucemia/etiologia , Leucemia/genética , Leucemia Mieloide/genética , Masculino , Camundongos , Camundongos Transgênicos , Transplante de Neoplasias , Complexo Repressor Polycomb 2/genética , Transativadores/genética , Proteínas Supressoras de Tumor/genética
8.
Haematologica ; 104(8): 1608-1616, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30679322

RESUMO

ZEB1 and ZEB2 are structurally related E-box binding homeobox transcription factors that induce epithelial to mesenchymal transitions during development and disease. As such, they regulate cancer cell invasion, dissemination and metastasis of solid tumors. In addition, their expression is associated with the gain of cancer stem cell properties and resistance to therapy. Using conditional loss-of-function mice, we previously demonstrated that Zeb2 also plays pivotal roles in hematopoiesis, controlling important cell fate decisions, lineage commitment and fidelity. In addition, upon Zeb2 overexpression, mice spontaneously develop immature T-cell lymphoblastic leukemia. Here we show that pre-leukemic Zeb2-overexpressing thymocytes are characterized by a differentiation delay at beta-selection due to aberrant activation of the interleukin-7 receptor signaling pathway. Notably, and in contrast to Lmo2-overexpressing thymocytes, these pre-leukemic Zeb2-overexpressing T-cell progenitors display no acquired self-renewal properties. Finally, Zeb2 activation in more differentiated T-cell precursor cells can also drive malignant T-cell development, suggesting that the early T-cell differentiation delay is not essential for Zeb2-mediated leukemic transformation. Altogether, our data suggest that Zeb2 and Lmo2 drive malignant transformation of immature T-cell progenitors via distinct molecular mechanisms.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Transformação Celular Neoplásica/genética , Proteínas com Domínio LIM/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Proteínas Proto-Oncogênicas/genética , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Biomarcadores , Linhagem Celular Tumoral , Autorrenovação Celular/genética , Transformação Celular Neoplásica/metabolismo , Modelos Animais de Doenças , Regulação Leucêmica da Expressão Gênica , Hematopoese , Humanos , Imuno-Histoquímica , Subunidade alfa de Receptor de Interleucina-7/metabolismo , Proteínas com Domínio LIM/metabolismo , Camundongos , Gradação de Tumores , Células-Tronco Neoplásicas/metabolismo , Fenótipo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Timo/patologia , Homeobox 2 de Ligação a E-box com Dedos de Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA